1口(1社3名まで受講可能)でのお申込は、

 受講料  が格安となります。





  
 <速習セミナー>
   
  スパースモデリング入門


  


 S191101K

 

開催日時:2019年11月1日(金) 10:30-16:30

会  場:オームビル(東京都千代田区神田錦町3‐1)
          【地下鉄】
             東西線『竹橋駅』徒歩3分
             三田線・新宿線・半蔵門線『神保町駅』徒歩7分
             新宿線・千代田線『小川町駅』徒歩7分
             丸ノ内線『淡路町駅』徒歩8分
          【JR】
             中央線・山手線・京浜東北線『神田駅』徒歩12分
             中央線・総武線『御茶ノ水駅』徒歩11分


受 講 料:
1人様受講の場合 46,000円[税別]/1名

     1口でお申込の場合 57,000円[税別]/1口(3名まで受講可能)


画像認識セミナー日程表  新宣伝セミナー日程表
 


 

 講 師


 日野 英逸 氏

      統計数理研究所 准教授  博士(工学)



< 講師紹介 >
主経歴
  京都大学情報学研究科博士前期課程修了
  (株)日立製作所システム開発研究所研究員
  早稲田大学博士後期課程修了(博士(工学))
  早稲田大学助教
  筑波大学助教,同 准教授

専門・得意分野
  機械学習,データ解析,応用統計,スパースモデリング

本テーマ関連の学会・協会・団体等
  電子情報通信学会,IEEE,日本神経回路学会,日本鉄鋼協会

セミナーポイント
 大量のデータに含まれる少数の本当に重要なデータを抽出したい,あるいは少数の
観測から背後にある多数のパラメタを推定したい,といったニーズは様々な産業分野
で日々産まれ続けている.計測技術の高度化やストレージの低価格化,折しものビッ
グデータブームに後押しされ,たくさんのセンサーによる計測結果を記録したはよい
ものの,その中から有用な情報を取り出すことが出来ないということも多い.
 スパースモデリングは,「同じことがらを説明できるならば,説明に用いるモデルは
簡潔な方がよい」という,合理的な先見知識を導入することで,大量のセンサーデータ
に埋もれた本質的に重要な信号を取り出したり,未知のパラメタの数よりもはるかに
少ない回数の計測データを用いてパラメタ同定を行ったりするための技術の総称であり,
既に統計的データ解析,機械学習の現場において必要不可欠な方法論となっている.
 本セミナーでは,おもに統計における正則化線形回帰という視点からスパースモデ
リングを概観し,多数提案されている主要な発展的手法も解説する.さらに,具体的な
問題をスパースモデリングにより定式化して効率的に解決する事例を,簡単なプログラ
ム例とデモを交えて紹介する.


受講後、習得できること
  ・スパースモデリングの基本的な考え方がわかる
  ・スパースモデリングを回帰モデリングの観点から理解できる
  ・信号処理や自然科学の実問題への適用例が理解できる





 講義項目

  1. 確率統計と線形代数の準備
    1.1 確率分布,密度関数
    1.2 行列のランク,ベクトルのノルム

  2. スパースモデリングの導入
    2.1 重回帰分析
    2.2 正則化回帰
    2.3 Lasso:L1正則化線形回帰

  3. 発展的な手法
    3.1 様々なスパース性
    3.2 正則化とバイアス
    3.3 一般化線形モデル

  4. オープンソースライブラリを利用した分析例
    4.1 glmnetによる正則化回帰・判別の例
    4.2 Fused Lassoによる時系列処理の例
    4.3 Graphical Lassoによる共分散構造選択の例

  5. まとめ
    (質疑応答)




 お1人様      受講申込要領 1口(1社3名まで) 受講申込要領  セミナー 総合日程 画像認識 セミナー日程 新宣伝 セミナー日程